La energía nuclear es aquella que se libera como resultado de una reacción nuclear. Se puede obtener por el proceso de Fisión Nuclear o bien por Fusión Nuclear. En las reacciones nucleares se libera una gran cantidad de energía debido a que parte de la masa de las partículas involucradas en el proceso, se transforma directamente en energía.
Los primeros pasos que dio el hombre para la obtención y transformación de esta clase de energía, data de los años 1930-1945, cuando se obtuvo en forma artificial y controlada esta forma de energía, para la construcción de la primera bomba atómica. Desde entonces se han realizado adelantos he investigaciones en este campo para su aplicación para el beneficio de la humanidad.
Historia
Cinco siglos antes de Cristo, los filósofos griegos se preguntaban si la materia podía ser dividida indefinidamente o si llegaría a un punto que tales partículas fueran indivisibles. Es así, como Demócrito formula la teoría de que la materia se compone de partículas indivisibles, a las que llamó átomos (del griego átomos, indivisible).
En 1803 el químico inglés John Dalton propone una nueva teoría sobre la constitución de la materia. Según Dalton toda la materia se podía dividir en dos grandes grupos: los elementos y los compuestos. Los elementos estarían constituidos por unidades fundamentales, que en honor a Demócrito, Dalton denominó átomos. Los compuestos se constituirían de moléculas, cuya estructura viene dada por la unión de átomos en proporciones definidas y constantes. La teoría de Dalton seguía considerando el hecho de que los átomos eran partículas indivisibles.
Hacia finales del siglo XIX, se descubrió que los átomos no son indivisibles, pues se componen de varios tipos de partículas elementales. La primera en ser descubierta fue el electrón en el año 1897 por el investigador Sir Joseph Thomson, quién recibió el Premio Nobel de Física en 1906. Posteriormente, Hantaro Nagaoka (1865-1950) durante sus trabajos realizados en Tokio, propone su teoría según la cual los electrones girarían en órbitas alrededor de un cuerpo central cargado positivamente, al igual que los planetas alrededor del Sol. Hoy día sabemos que la carga positiva del átomo se concentra en un denso núcleo muy pequeño, en cuyo alrededor giran los electrones.
El núcleo del átomo se descubre gracias a los trabajos realizados en
Radiactividad
En Febrero de 1896, el físico francés Henri Becquerel investigando con cuerpos fluorescentes (entre ellos el Sulfato de Uranio y el Potasio), halló una nueva propiedad de la materia a la que posteriormente Marie Curie llamó "Radiactividad". Se descubre que ciertos elementos tenían la propiedad de emitir radiaciones semejantes a los rayos X en forma espontánea. Tal radiación era penetrante y provenía del cristal de Uranio sobre el cual se investigaba.
La radiactividad es un fenómeno que se origina exclusivamente en el núcleo de los átomos radiactivos. La causa que los origina probablemente se debe a la variación en la cantidad de partículas que se encuentran en el núcleo.
Cuando el núcleo atómico es inestable a causa del gran número de protones que posee (ocurre en los elementos más pesados, es decir con Z = 83 o superior), la estabilidad es alcanzada, con frecuencia, emitiendo una partícula alfa, es decir, un núcleo de Helio (2He4) formado por dos protones y dos neutrones.
Cuando la relación de neutrones/protones en un núcleo atómico es elevada, el núcleo se estabiliza emitiendo un neutrón, o bien como ocurre con frecuencia, emitiendo una partícula beta, es decir, un electrón.
Cuando la relación de neutrones/protones es muy pequeña, debe ocurrir una disminución en el número de protones o aumentar el número de neutrones para lograr la estabilidad del núcleo. Esto ocurre con la emisión de un electrón positivo o positrón, o bien absorbiendo el núcleo un electrón orbital.
Radiactividad Artificial
Al bombardear diversos núcleos atómicos con partículas alfa de gran energía, se pueden transformar en un núcleo diferente, por lo tanto, se transforma en un elemento que no existe en la naturaleza. Los esposos Irene Curie y Frédéric Joliot, experimentando con tales procesos descubren la radiactividad artificial, pues se percatan que al bombardear ciertos núcleos con partículas procedentes de fuentes radiactivas estos se vuelven radiactivos. Si la energía de las partículas es adecuada, entonces puede penetrar en el núcleo generando su inestabilidad y por ende, induciendo su desintegración radiactiva.
Desde el descubrimiento de los primeros elementos radiactivos artificiales, el hombre ha logrado en el tiempo obtener una gran cantidad de ellos. Es clave en este proceso la aparición de los llamados aceleradores de partículas y de los reactores nucleares. Estos últimos son fuente importante de neutrones que son utilizados para producir gran variedad de radioisótopos.
Es una reacción nuclear que tiene lugar por la rotura de un núcleo pesado al ser bombardeado por neutrones de cierta velocidad. A raíz de esta división el núcleo se separa en dos fragmentos acompañado de una emisión de radiación, liberación de 2 ó 3 nuevos neutrones y de una gran cantidad de energía (200 MeV) que se transforma finalmente en calor.
La fusión nuclear ocurre cuando dos núcleos atómicos muy livianos se unen, formando un núcleo atómico más pesado con mayor estabilidad. Estas reacciones liberan energías tan elevadas que en la actualidad se estudian formas adecuadas para mantener la estabilidad y confinamiento de las reacciones.
Inconvenientes de la energía nuclear
*Almacenamiento de residuos radiactivos
*Riesgo de accidentes nucleares
*Transporte de residuos radiactivos
*Recalentamiento de los ríos
*Aumento de las enfermedades provocadas por la radiactividad
*Contaminación de las personas que trabajan con energía nuclear
*Contaminación radiactiva del entorno
*Accidente nuclear
*Accidentes en el transporte de residuos radiactivos
*Recalentamiento de los ríos
Aprovechamiento de
Durante los últimos decenios, se han alcanzado logros importantes en campos de la energía y el medio ambiente, la medicina, la agricultura y la industria, entre otros, en los que se aplican ampliamente las tecnologías nuclear y de las radiaciones. Su utilización nos permite, por ejemplo, detectar, localizar, representar visualmente y medir lo que nuestros ojos no pueden ver; destruir células y gérmenes cancerígenos; localizar recursos hídricos, entre otros.
La energía Nuclear y
Quizás el uso de las técnicas nucleares en los campos del diagnóstico, la obtención de imágenes y el tratamiento del cáncer sea el más conocido y ampliamente aceptado. De hecho, la medicina moderna no podría concebirse sin la radiología con fines de diagnóstico y la radioterapia. En el mundo industrializado occidental, estas técnicas se han vuelto corrientes, tan fiables y tan precisas que aproximadamente uno de cada tres pacientes es sometido a alguna forma de procedimiento radiológico terapéutico o de diagnóstico.
Se ha desarrollado la técnica del empleo de las radiaciones ionizantes para la conservación de alimentos, ampliación de su período de consumo, y reducción de las pérdidas causadas por insectos después de la recolección. La técnica del tratamiento de alimentos con energía ionizante consiste en exponer los alimentos a una dosis de radiación gamma predeterminada y controlada. Esta técnica consume menos energía que los métodos convencionales y puede reemplazar o reducir radicalmente el uso de aditivos y fumigantes en los alimentos.
La energía nuclear y
La utilización de técnicas nucleares en el campo de la agricultura es de importancias primordial para el mundo en desarrollo.
Las técnicas radioisotópicas y de las radiaciones que se aplican en este campo pueden inducir mutaciones en las plantas para obtener las variedades de cultivos agrícolas deseadas.
Determinar las condiciones para optimizar el uso de los fertilizantes y del agua, y la fijación biológica del nitrógeno.
La técnica permite calcular el total de nitrógeno que se ha fijado durante todo el período de crecimiento. Por este medio, pueden determinarse y seleccionarse para el mejoramiento genético leguminosas fijadoras de nitrógeno más eficiente con mayor rendimiento y contenido proteínico.
Ayudar a determinar las rutas de los plaguicidas y los productos agroquímicos en el medio ambiente y en la cadena alimentaria.
La utilización de los radioisótopos y radiaciones en la industria moderna es de gran importancia para el desarrollo y mejoramiento de los procesos, para las mediciones y la automatización y para el Control de Calidad. En la actualidad, casi todas las ramas de la industria utilizan radioisótopos y radiaciones en diversas formas. El empleo de medidores radioisotópicos de espesor es un requisito previo para la completa automatización de las líneas de producción de alta velocidad de hojas de acero o de papel. Los trazadores brindan información exacta sobre las condiciones de equipos industriales costosos y permiten prolongar su vida útil.
No hay comentarios:
Publicar un comentario